[45] Lindskog, A, Young, SA, Bowman, CN, Kozik, NP, Newby, S, Eriksson, ME, Pettersson, J, Molin, E, Owens, JD, in press. Oxygenation of the Baltoscandian shelf linked to Ordovician biodiversification. Nature Geoscience, in press.
[44] Kozik, NP, Young, SA, Ahlberg, P, Lindskog, A, Owens, JD, 2023. Progressive marine oxygenation and climatic cooling at the height of the Great Ordovician Biodiversification Event. Global and Planetary Change 227 (104183), p. 1-15. https://doi.org/10.1016/j.gloplacha.2023.104183
[43] Yang, S., Lu, X. Chen, X, Zheng, W, Owens, JD, Young, SA, Kendall, B, 2023, Uranium and molybdenum isotope evidence for globally extensive marine euxinia on continental margins and in epicontinental seas during the Devonian-Carboniferous Hangenberg Crisis. Geochimica et Cosmochimica Acta 352, p.133-156. https://doi.org/10.1016/j.gca.2023.04.027.
[42] Lindskog, A, Young, SA, Nielsen, AT, Eriksson, ME, 2023. Coupled biostratigraphy and chemostratigraphy at Lanna, Sweden: A key section for the Floian–lower Darriwilian interval (Lower–Middle Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology 615 (111446), p. 1-12. https://doi.org/10.1016/j.palaeo.2023.111446
[41] Stolfus, BM, Allman, LJ, Young, SA, Calner, M, Hartke, ER, Oborny, SC, Bancroft, AM, Cramer, BD., 2023. Expansion of Reducing Marine Environments during the Ireviken Biogeochemical Event: Evidence from the Altajme Core, Gotland, Sweden. Paleoceanography and Paleoclimatology 38(2), e2022PA004484, p. 1-16. https://doi.org/10.1029/2022PA004484
[40] Kozik, NP, Young, SA, Lindskog, A., Ahlberg, P., Owens, J.D., 2023. Protracted oxygenation across the Cambrian–Ordovician transition: a key initiator of the Great Ordovician Biodiversification Event? Geobiology 21(3), p. 323-340, https://doi.org/10.1111/gbi.12545
[39] Young, SA, Edwards, CT, Ainsaar, L, Lindskog, A, Saltzman, MR, 2023, Seawater Signatures of Ordovician Climate and Environment. Harper, DA T, Lefebvre, B, Percival, IG and Servais, T (eds), A Global Synthesis of the Ordovician: Part 1. Geological Society of London Special Publications 532, 1-20, https://doi.org/10.1144/SP532-2022-258.
[38] Kozik, NP, Young, SA, Newby, S, Liu, M, Chen, D, Hammarlund, E, Bond, D, Them II, TR, Owens, JD, 2022, Rapid marine oxygen variability: Driver of the Late Ordovician Mass Extinction. Science Advances 8 (46) eabn8345, 1-8, doi: 10.1126/sciadv.abn8345
[37] Kozik, NP, Gill, BC, Owens, JD, Lyons, TW, Young, SA, 2022, Geochemical records reveal protracted and differential marine redox change associated with Late Ordovician climate and mass extinctions. AGU Advances 3, e2021AV000563, 1-17, https://doi.org/10.1029/2021AV000563
[36] Bowman, CN, Them II, TR, Knight, MD, Kaljo, D, Eriksson, ME, Hints, O, Martma, T, Owens, JD, Young, SA, 2021, A multi-proxy approach to constrain reducing conditions in the Baltic Basin during the late Silurian Lau carbon isotope excursion. Palaeogeography, Palaeoclimatology, Paleoecology 581, 110624, 1-13, doi: 10.1016/j.palaeo.2021.110624
[35] Bowman, C.N., Lindskog, A., Kozik, N.P., Richbourg, C.G., Owens, J.D., Young, S.A., 2020, Integrated sedimentary, biotic, and paleoredox dynamics from multiple localities in southern Laurentia during the late Silurian (Ludfordian) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 553, 109799, 1-17, doi: 10.1016/j.palaeo.2020.109799
[34] Young, S.A., Benayoun, E., Kozik, N.P., Hints, O., Martma, T., Bergström, S.M., Owens, J.D, 2020, Marine redox variability from Baltica during extinction events in the latest Ordovician–early Silurian. Palaeogeography, Palaeoclimatology, Palaeoecology 554, 109792. 1-17, doi: 10.1016/j.palaeo.2020.109792
[33] Fan, H, Nielsen, SG, Owens, JD, Auro, M, Shu,Y, Hardisty, DS, Bowman, CB, Young, SA, Wen, H, 2020, Constraining oceanic oxygenation during the Shuram excursion in South China using thallium isotopes, Geobiology 18, 348-365, doi:10.1111/gbi.12379
[32] Bowman, CN, Young, SA, Kaljo, D, Eriksson, ME, Them II, TR, Hints, O, Martma, T, Owens, JD, 2019, Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology 47, 968-972, doi.org/10.1130/G46571.1
[31] Adiatma, YD, Saltzman, MR, Young, SA, Griffith, EM, Kozik, NP, Edwards, C.T., Leslie, SA, Bancroft, AM, 2019, Did early land plants produce a stepwise-change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)? Palaeogeography, Palaeoclimatology, Palaeoecology 534, 109341, 1-14. doi.org/10.1016/j.palaeo.2019.109341
[30] Young, SA, Kleinberg, A, Owens, JD, 2019, Geochemical evidence for expansion of marine euxinia during an early Silurian (Llandovery–Wenlock boundary) mass extinction. Earth and Planetary Science Letters 513, 187-196. doi.org/10.1016/j.epsl.2019.02.023
[29] Kozik, NP, Young, SA, Bowman, CN, Saltzman, MR, Them, TR. 2019. Middle–Upper Ordovician (Darriwilian–Sandbian) paired carbon and sulfur isotope stratigraphy from the Appalachian Basin, USA: Implications for dynamic redox conditions spanning the peak of the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology 520, 188-202. doi.org/10.1016/j.palaeo.2019.01.032
[28] Lindskog, A and Young, SA. 2019, Dating of sedimentary rock intervals using visual comparison of carbon isotope records: a comment on the recent paper by Bergström et al. concerning the age of the Winneshiek Shale. Lethaia 52, 299-303. doi.org/10.1111/let.12316
[27] Lindskog, A, Eriksson, ME, Bergström, SM, Young SA. 2019, Lower–Middle Ordovician carbon and oxygen isotope chemostratigraphy at Hällekis, Sweden: implications for regional to global correlation and palaeoenvironmental development. Lethaia 52, 204-219. doi.org/10.1111/let.12307
[26] Young, SA, Cadieux, SB, Peng, Y, White, JR, Pratt, LM. 2018, Seasonal changes in sulfur biogeochemistry of a dilute, dimictic Arctic lake: Implications for paired sulfur isotope records from ancient oceans. Chemical Geology 495, 118-130. doi: 10.1016/j.chemgeo.2018.08.013
[25] Proemse, BC, Murray, AE, Schallenberg, C, McKiernan, B, Glazer, BT, Young, SA, Ostrom, NE, Bowie, AR, Wieser, ME, Kenig, F, Doran, PT, Edwards, R. 2017. Iron cycling in the anoxic cryo-ecosystem of Antarctic Lake Vida. Biogeochemistry 134, 17-27. doi: 10.1007/s10533-017-0346-5
[24] Bergström, SM, Eriksson, ME, Schmitz, B.,Young, SA, Ahlberg, P. 2016. Upper Ordovician δ13Corg chemostratigraphy, K-bentonite stratigraphy, and biostratigraphy in southern Scandinavia: A reappraisal. Palaeogeography, Palaeoclimatology, Palaeoecology 454, 175-188. doi: 10.1016/j.palaeo.2016.04.037
[23] Young, SA, Gill, BC, Edwards, CT, Saltzman, MR, Leslie, SA. 2016. Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 118-132. doi:10.1016/j.palaeo.2015.09.040
[22] Edwards, CT, Saltzman, MR, Leslie, SA, Bergström, SM, Sedlacek, ARC, Howard, A, Bauer, JA, Sweet, WC, Young, SA, 2015.
Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin 127 (9/10), 1275-1289 doi:10.1130/B31149.1
[21] Bergström, SM, Saltzman, MR, Leslie, SA, Ferretti, A, Young, SA, 2015. Trans-Atlantic application of the Baltic Middle and Upper Ordovician carbon isotope zonation. Estonian Journal of Earth Sciences 64, 8-12. doi: 10.3176/earth.2015.02
[20] Bergström, SM, Eriksson, ME, Young, SA, Ahlberg, P, Schmitz, B. 2014. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: a refined integration with the graptolite and conodont successions. GFF 136: 355-386.
[19] Young, SA, Loukola-Ruskeeniemi, K, and Pratt, LM, 2013. Reactions of hydrothermal solutions with organic matter in Paleoproterozoic black shales at Talvivaara, Finland: Evidence from multiple sulfur isotopes. Earth and Planetary Science Letters 367: 1-14.
[18] Bergström, SM, Eriksson, ME, Young, SA, Widmark, EM, 2013. Conodont biostratigraphy and δ13C and δ34S isotope chemostratigraphy of the uppermost Ordovician and Lower Silurian at Osmundsberget, Dalarna, Sweden. GFF 4:251-272.
[17] Murray, AM, Kenig, F, Fritsen, CM, McKay, CP, Cawley KM, Edwards, R, Kuhn, E, McKnight, DM, Ostrom, NE, Peng, V, Ponce, A, Priscu, JC, Samarkin, V, Townsend, AT, Wagh, P, Young, SA, Yung, PT, Doran, PT. 2012. Microbial Life at -13ºC in the Brine of an Ice-Sealed Antarctic Lake. Proceedings of the National Academy of Sciences, 109 (50) 20626-20631. doi:10.1073/pnas.1208607109
[16] Bergström, SM, Schmitz, B, Young, SA and Bruton, DL, 2011. Lower Katian (Upper Ordovician) δ13C chemostratigraphy, global correlation, and sea-level changes in Baltoscandia. GFF, 133: 31-47.
[15] Saltzman, MR, Young, SA, Kump, LR, Gill, BC, Lyons, TW, and Runnegar, B, 2011. A pulse of atmospheric oxygen during the Late Cambrian: Implications for animal biodiversification. Proceedings of the National Academy of Sciences, 108: 3876-3881.
[14] Gill, BC, Lyons, TW, Young, SA, Kump, LR, Knoll, AH, and Saltzman, MR, 2011. Sulfur isotope evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469:80-83.
[13] Young, SA, Saltzman, MR, Ausich, WI, and Kaljo, D, 2010. Did changes in atmospheric CO2 coincide with latest Ordovician glacial–interglacial cycles? Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 376-388.
[12] Bergström, SM, Young, SA, and Schmitz, B. 2010. Katian (Upper Ordovician) δ13C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: a regional comparison. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 217-234.
[11] Gouldey, JC, Saltzman, MR, Young, SA, and Kaljo, D, 2010. Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian): Implications for tectonics and weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 264-275.
[10] Bergström, SM, Schmitz, B, Young, SA, and Bruton, D. L. 2010. The δ13C chemostratigraphy of the Upper Ordovician Mjøsa Formation at Furuberget near Hamar, southeastern Norway: Baltic, Trans-Atlantic, and Chinese relations. Norwegian Journal of Geology, 90: 65-78.
[9] Young, SA, Saltzman, MR, Foland, KA, Linder, JS, and Kump, LR, 2009. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate? Geology, 37: 951-954.
[8] Young, SA, Saltzman, MR, Bergström, SM, Leslie, SA, Xu, C, 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian-Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeography, Palaeoclimatology, Palaeoecology 270: 166-178.
[7] Goldman, D, Leslie, SA, Nõlvak, J, Young, SA, Bergström, SM, and Huff, WD, 2008. An Ordovician Global Reference Section Recently Selected in Oklahoma. Oklahoma Geology Notes 68, 15-18.
[6] Goldman, D, Leslie, SA, Nõlvak, J, Young, SA, Bergström, SM, and Huff, WD, 2007. The Global Stratotype Section and Point (GSSP) for the base of the Katian Stage of the Upper Ordovician Series at Black Knob Ridge, Southeastern Oklahoma, USA. Episodes 30, 258-270.
[5] Bergström, SM, Young, SA, Schmitz, B, and Saltzman, MR, 2007. Upper Ordovician d13C chemostratigraphy: A trans-Atlantic comparison. Acta Palaeontologica Sinica 46: 37-39.
[4] Young, SA, Saltzman, MR, and Bergström, SM, 2005. Upper Ordovician (Mohawkian) carbon isotope (d13C) stratigraphy in eastern and central North America: Regional expression a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 53-76.
[3] Saltzman, MR and Young, SA, 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33 (2): 109-112.
[2] Young, SA, 2004. Carbon isotope stratigraphy; a gateway to the past, present, and future. Sedimentary Record 2 (2): 11.
[1] Young, SA and Leslie, SA, 1999. The search for K-bentonite beds in Arkansas and their potential for regional correlation. Proceeding Journal of the Arkansas Undergraduate Research Conference and Space Grant Symposium: 231-234.
Proudly powered by Weebly